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Many real-world problems can be modeled as a network of 
cooperative agents that have to coordinate their actions in order to 

optimize the system performance
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Open problems

Scheduling
Smart grid
Traffic light synchronization

DCOPs for smart grid: Configuration of power networks

[Petcu & Faltings, 2008]

How sinks configure the network by enabling transmission lines such
that is (a) cycle-free and (b) the amount of power lost is minimized.
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Optimization with agents

 a1

a0 a2

Each agent can choose from a set of discrete 
actions

Each agent sensor has two actions:

Turn on   Turn off

Each agent sensor has two actions:jueves 28 de julio de 2011



Optimization with agents

 a1

a0 a2

Agents report individual rewards for their actions

Each agent sensor has two actions:

1/4$

1/2$ 1/2$

Agent sensors report a reward to turn off (e.g. 
which may vary depending on the remaining battery)
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Optimization with agents

 a1

a0 a2

An edge stands for two agents that need to 
coordinate in order to receive a joint reward

Each agent sensor has two actions:

There is a reward if the region between two 
sensors is sampled by at least one sensor

If two neighboring agents select different 
actions they receive 1$
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Optimization with agents

 a1

a0 a2

Each agent sensor has two actions:

The goal is to distributedly find a set of actions 
that maximize the overall reward

1$

• Optimal configuration 3$

1$

1/2$ 1/2$
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Disaster management Traffic light control

Energy-efficient
sensor networksSmart (electricity) grid

 a1

a0 a2

Motivating domains
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Traffic light control

Coordinate traffic lights so that vehicles can traverse an 
arterial in one traffic direction, keeping a specified speed 
without stopping (green waves)

Old times: 
isolated traffic lights

Future generation:
social traffic lights
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Traffic light control
 [R. Junges and A. L. C. Bazzan, 2010] uses a 
multi-agent system approach in which:
22 Chapter 2. Problem definition
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Figure 2.4: An traffic light synchronization problem. (a) The traffic light synchroniza-

tion problem: there are four crossings with an square connection. (b) The DCOP model:

each crossing has an associated variable that models the feasible plans for the crossing.

sensors s1 and s2 in order to avoid redundant measurements and minimise energy con-

sumption. Figure 2.3(b) shows a DCOP model of the problem. The variables represent

sensors and each variable’s domain is composed of sensor’s actions (to turn on or off).

Unary relations stand for sensors costs, e.g. unary relation r0 encodes a reward of
1
2

for sensor x0 to turn on. Binary relations stand for sensors dependencies, relation r01

encodes the rewards for the joint configurations of sensors s0 and s1.

As argued in chapter 1 for the specific case of environmental monitoring, this kind

of sensor networks are typically composed of a large number of small-sized battery-

operated sensors equipped with limited data processing and communication capabilities

and hence, coordination to the optimal is in general not affordable under such severe

conditions. Moreover, information gathering is a domain that allows to select among

different on sensor positions or formations to trade-off quality versus cost.

2.3.3 Traffic light control
Consider the problem of synchronizing traffic lights in a city. Synchronization here

means that adjacent traffic lights will be coordinated so that vehicles can traverse an

arterial in one traffic direction, keeping a specific speed, without stopping. Each traffic

light has a library of plans, each allowing the synchronization in different traffic direc-

tion. The specific objective of the scenario is to find the best signal plan configuration

for the traffic lights.

This problem of traffic light synchronisation is formalized in (Junges and Bazzan,

2008) as a DCOP Φ = �A,X ,D,R� such that:

• X = {x1, . . . , xn} and A = {a1, . . . , an} are the sets of variables/agents, where

n is the number of crossings;
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sensors s1 and s2 in order to avoid redundant measurements and minimise energy con-

sumption. Figure 2.3(b) shows a DCOP model of the problem. The variables represent

sensors and each variable’s domain is composed of sensor’s actions (to turn on or off).

Unary relations stand for sensors costs, e.g. unary relation r0 encodes a reward of
1
2

for sensor x0 to turn on. Binary relations stand for sensors dependencies, relation r01

encodes the rewards for the joint configurations of sensors s0 and s1.

As argued in chapter 1 for the specific case of environmental monitoring, this kind

of sensor networks are typically composed of a large number of small-sized battery-

operated sensors equipped with limited data processing and communication capabilities

and hence, coordination to the optimal is in general not affordable under such severe

conditions. Moreover, information gathering is a domain that allows to select among

different on sensor positions or formations to trade-off quality versus cost.

2.3.3 Traffic light control
Consider the problem of synchronizing traffic lights in a city. Synchronization here

means that adjacent traffic lights will be coordinated so that vehicles can traverse an

arterial in one traffic direction, keeping a specific speed, without stopping. Each traffic

light has a library of plans, each allowing the synchronization in different traffic direc-

tion. The specific objective of the scenario is to find the best signal plan configuration

for the traffic lights.

This problem of traffic light synchronisation is formalized in (Junges and Bazzan,

2008) as a DCOP Φ = �A,X ,D,R� such that:

• X = {x1, . . . , xn} and A = {a1, . . . , an} are the sets of variables/agents, where

n is the number of crossings;

Each agent is in charge 
of a crossing
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sensors s1 and s2 in order to avoid redundant measurements and minimise energy con-

sumption. Figure 2.3(b) shows a DCOP model of the problem. The variables represent

sensors and each variable’s domain is composed of sensor’s actions (to turn on or off).

Unary relations stand for sensors costs, e.g. unary relation r0 encodes a reward of
1
2

for sensor x0 to turn on. Binary relations stand for sensors dependencies, relation r01

encodes the rewards for the joint configurations of sensors s0 and s1.

As argued in chapter 1 for the specific case of environmental monitoring, this kind

of sensor networks are typically composed of a large number of small-sized battery-

operated sensors equipped with limited data processing and communication capabilities

and hence, coordination to the optimal is in general not affordable under such severe

conditions. Moreover, information gathering is a domain that allows to select among

different on sensor positions or formations to trade-off quality versus cost.

2.3.3 Traffic light control
Consider the problem of synchronizing traffic lights in a city. Synchronization here

means that adjacent traffic lights will be coordinated so that vehicles can traverse an

arterial in one traffic direction, keeping a specific speed, without stopping. Each traffic

light has a library of plans, each allowing the synchronization in different traffic direc-

tion. The specific objective of the scenario is to find the best signal plan configuration

for the traffic lights.

This problem of traffic light synchronisation is formalized in (Junges and Bazzan,

2008) as a DCOP Φ = �A,X ,D,R� such that:

• X = {x1, . . . , xn} and A = {a1, . . . , an} are the sets of variables/agents, where

n is the number of crossings;

The decision of an agent is 
composed of a set of signals 
plans for the traffic lights in 

the crossing

⊗⊕
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Traffic light control
 [R. Junges and A. L. C. Bazzan, 2010] uses a 
multi-agent system approach in which:

Two agents in two adjacent 
crossings need to coordinate 

their plans
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Traffic light control
 [R. Junges and A. L. C. Bazzan, 2010] uses a 
multi-agent system approach in which:

The reward to execute two plans 
in neighboring crossings is in 

function of:
(1) the degree in which these two 

plans synchronize
(II) the volume of vehicles in that 

direction
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Traffic light control
 [R. Junges and A. L. C. Bazzan, 2010] uses a 
multi-agent system approach in which:

⊗
⊕

⊕
2$   1$
2$  0$

⊗
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Smart grid
. The current hierarchical, 
centrally-controlled grid is 
obsolete
. Problems on scalability, 
efficiency and integration 
of green energies
. Most of the decisions 
about the operation of a 
power system are made in 
a centralized fashion
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Smart grid
. Centralized control is replaced with 
decentralized control:

  . efficiency and scalability
  . complex control mechanisms 
needed

. Introduction of intelligence at all levels, especially at lower levels, 
to provide timely and accurate control responses
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Smart grid

. Home/neighborhood level

. Distribution level

. Transmission level

jueves 28 de julio de 2011



Smart grid

. Home/neighborhood level

. Coordinate home appliances 
to reduce the peak

. Create coalitions of energy 
profiles to reduce the peak

jueves 28 de julio de 2011



Smart grid
. Transmission level

How sinks configure the network by 
enabling transmission lines such that 
are:
 (a) cycle free;  and 
 (b) the amount of power lost is 
minimized.

[Petcu & Faltings, 2008]

Introduction
Applications
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Traffic light synchronization

DCOPs for smart grid: Configuration of power networks

[Petcu & Faltings, 2008]

How sinks configure the network by enabling transmission lines such
that is (a) cycle-free and (b) the amount of power lost is minimized.
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Maxims for researchers
First takes all the credit, second gets nothing
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Maxims for researchers
Either you are the first or you are the best in the crowd
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The moral

Identify open problems, preferably with few contributions
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Open problems

Trade-off quality vs cost

Dynamism

Uncertainty

Hierarchical 
optimization

Non-cooperative
agents
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Optimality: the idealistic (but 
usually impractical) term

Researchers have proposed optimal algorithms that aim 
to minimize the communication/computation needed 
by agents to find their optimal actions

All of them have an exponential cost (either in size/
number of messages/computation)

DPOP [A. Petcu & B. Faltings, 2005]  ADOPT [Modi et al., 2005]    
OptAPO [R. Mailler & V. Lesser, 2004]  Action-GDL [M. Vinyals et al., 2010]   
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Optimality: the idealistic (but 
usually impractical) term

Smart grid Traffic light control Energy-efficient
sensor networks

Time                             Scale                Communication/Computation

In many domains the price of optimality is simply not affordable
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Suboptimality: low-cost at not 
guarantees

Researchers have also proposed suboptimal algorithms:

 . Return fast good solutions in average
 . Small amount of communication/computation per 
agent

But not guarantee ....

DSA [Yokoo & Hirayama, 1996]  DBA [Fitzpatrick & Meeterns., 2005]       
Max-Sum [Farinelli et al., 2009]       
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Suboptimality: low-cost at not 
guarantees

Although suboptimal coordination returns good 
solutions on average ....

a1

a0 a2

1/4$

1/2$

2.75$
(Optimal configuration 3$)

1$

1$
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Suboptimality: low-cost at not 
guarantees

... it can also converge to very poor solutions

1.25$
(Optimal configuration 3$)

a1

a0 a2

1/4$

1/2$1/2$
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Suboptimal coordination with 
quality guarantees

A quality guarantee ensures that the value of a solution is 
within a given distance δ from the optimal one

δ ≤ solution value
optimal value
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Suboptimal coordination with 
quality guarantees

A quality guarantee ensures that the value of a solution is 
within a given distance δ from the optimal one

δ= 50%
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Suboptimal coordination with 
quality guarantees

A quality guarantee ensures that the value of a solution is 
within a given distance δ from the optimal one

91%

a1

a0 a2

1/4$

1/2$

2.75$

1$

1$

δ= 50%
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Suboptimal coordination with 
quality guarantees

A quality guarantee ensures that the value of a solution is 
within a given distance δ from the optimal one

δ= 50%

91%

δ= 50%

41%

a1
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1/4$

1/2$

2.75$

1$

1$

δ= 50%

1.25$
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1/2$1/2$
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Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: algorithm selection

e.g. in traffic control Algorithm A      Algorithm B

jueves 28 de julio de 2011



Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: algorithm selection

e.g. in traffic control Algorithm A      Algorithm B

The best solution varies with 
traffic conditions ....
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Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: algorithm selection

e.g. in traffic control Algorithm A      Algorithm B

... but  the structure of 
dependencies is fixed and 

determined by the particular 
urban grid
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Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: algorithm selection

e.g. in traffic control

Algorithm A      Algorithm B
50%                 25%
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Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: algorithm selection

e.g. in traffic control

Algorithm A      Algorithm B
20%                 40%
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Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: configuration selection

e.g. in sensor 
networks

We can select a 
placement for 

sensors

30%
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Suboptimal coordination with 
quality guarantees

Quality guarantees allow system designer to evaluate different 
design alternatives: configuration selection

e.g. in sensor 
networks

We can select a 
placement for 

sensors

50%
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Suboptimal coordination with 
quality guarantees: approaches

• Region optimal algorithms [AAMAS, 2011]
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Suboptimal coordination with 
quality guarantees: approaches

A solution is region optimal when its value cannot be improved by 
changing the decision of any group of agents in the region
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Suboptimal coordination with 
quality guarantees: approaches

A solution is region optimal when its value cannot be improved by 
changing the decision of any group of agents in the region

a0

a1 a2

a3
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Suboptimal coordination with 
quality guarantees: approaches

A solution is region optimal when its value cannot be improved by 
changing the decision of any group of agents in the region

a0

a1 a2

a3

{a0, a1}

Groups in the region

{a0, a2}
{a0, a3}

{a1, a2}
{a1, a3}

{a2, a3}
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Suboptimal coordination with 
quality guarantees: approaches

A solution is region optimal when its value cannot be improved by 
changing the decision of any group of agents in the region

a0

a1 a2

a3

{a1, a2, a3}
{a0, a3}

{a0, a1, a2}

Groups in the region
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Suboptimal coordination with 
quality guarantees: approaches

Region optimality [AAMAS, 2011]  allows to assess 
quality guarantees for any region optimal
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Suboptimal coordination with 
quality guarantees: approaches

a0

a1 a2

a3

The quality of any region 
optimal in this region in any 

problem is guaranteed to be at 
least 33% the value of the 

optimal solution

Region optimality [AAMAS, 2011]  allows to assess 
quality guarantees for any region optimal
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Suboptimal coordination with 
quality guarantees: approaches

a0

a1 a2

a3

The quality of any region 
optimal in this region in any 

problem with this dependency 
graph is guaranteed to be at 
least 50% the value of the 

optimal solution

Region optimality [AAMAS, 2011]  allows to assess 
quality guarantees for any region optimal
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Suboptimal coordination with 
quality guarantees: approaches

a0

a1 a2

a3

The quality of any region 
optimal in this region in any 

problem with this dependency 
graph and reward structure is 
guaranteed to be at least 75% 

the value of the optimal solution

Region optimality [AAMAS, 2011]  allows to assess 
quality guarantees for any region optimal

$ $

$ $

$
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Suboptimal coordination with 
quality guarantees: approaches

So far we have characterized quality guarantees 
for region optimal solutions but ...

how agents find such region optimal solutions?

jueves 28 de julio de 2011



Suboptimal coordination with 
quality guarantees: approaches

So far we have characterized quality guarantees 
for region optimal solutions but ...

how agents find such region optimal solutions?
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Suboptimal coordination with 
quality guarantees: approaches

A generic region optimal algorithm

Initialization Optimization Implementation
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Suboptimal coordination with 
quality guarantees: approaches

A generic region optimal algorithm

Initialization Optimization Implementation

Agents select an initial action

 a1

a0 a2

1/4$

1/2$ 1/2$
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Suboptimal coordination with 
quality guarantees: approaches

A generic region optimal algorithm

Each group of agents in the region optimizes its 
decision given other agents decisions.

Initialization Optimization Implementation

 a1

a0 a2

1/2$ 1/2$
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Suboptimal coordination with 
quality guarantees: approaches

A generic region optimal algorithm

Initialization Optimization Implementation

 a1

a0 a2

1/2$ 1/2$

jueves 28 de julio de 2011



Suboptimal coordination with 
quality guarantees: approaches

A generic region optimal algorithm

Initialization Optimization Implementation
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Suboptimal coordination with 
quality guarantees: approaches

A generic region optimal algorithm

Initialization Optimization Implementation

 a1

a0 a2

1/2$ 1/2$

The quality of any region 
optimal in this region in any 
problem is guaranteed to be 
at least 50% the value of the 

optimal solution

... until stabilitzation
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Message to take away

• Many real-world problems can be modeled as a network 
of agents that need to coordinate their actions to optimize 
system performance

• Optimality is not affordable in many of these emerging 
large-scale domains

• An open line of research is how to design suboptimal 
algorithms that provide quality guarantees over the agent’s 
actions
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Gracias por vuestra atención!!!
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