INGENIAS: Desarrollo dirigido por modelos de SMA

Juan Pavón Mestras

jpavon@pdi.ucm.es

Dep. de Ingeniería del Software e Inteligencia Artificial Universidad Complutense Madrid

http://grasia.fdi.ucm.es

Objetivo de INGENIAS

- Proporcionar soluciones de ingeniería para desarrollar SMA
 - Notación
 - Lenguaje visual para expresar el diseño de SMA y agentes
 - Métodos
 - · Proceso de desarrollo
 - Organización de entregas
 - Actividades relacionadas
 - Herramientas: Ingenias Development Kit (IDK)
 - Generación de especificación
 - Validación de diseño
 - Generación de código
 - · Generación de documentación

Juan Pavón Mestras, UCM INGENIAS

Planteamiento de INGENIAS

- Principios
 - Agentes como paradigma de modelado
 - · Conceptos de más alto nivel que en objetos y más cercanos al dominio
 - Se pueden considerar adaptaciones específicas a dominios de aplicación particulares
 - Los aspectos organizativos e intencionales reducen el salto de especificación de requisitos al diseño (modelo, solución) de sistema
 - Implementación sobre distintos tipos de plataforma
 - Un modelo de SMA se puede implementar sobre una plataforma de agentes o sobre un entorno de objetos tradicional
 - La metodología facilita y promueve el desarrollo de herramientas de generación de código que faciliten el paso del modelo (análisis y diseño) a la implementación
 - Contempla la evolución de la tecnología de agentes
 - Integración de resultados del área
 - · Adaptabilidad a nuevos lenguajes y estándares (p.ej. AUML)
- Todo ello basado en la utilización y manipulación de metamodelos y transformaciones
 - Desarrollo dirigido por modelos de SMA

Juan Pavón Mestras, UCM

INGENIAS

3

Desarrollo de software dirigido por modelos (MDD)

- Los modelos dirigen el desarrollo y mantenimiento del sistema
 - Además de:
 - · Analizar y experimentar
 - Documentar
 - Facilitar la comunicación entre clientes, usuarios y desarrolladores
 - No sólo como guía de implementación
 - Los modelos (y no los programas) pasan a ser el centro y los artefactos fundamentales del proceso software
- Herramientas necesarias:
 - Edición de modelos
 - Generación automática de código
 - Potencialmente sobre múltiples plataformas
 - Verificación y validación de modelos
 - · Análisis de propiedades
 - · Simulación (ejecución de los modelos)

Juan Pavón Mestras, UCM

INGENIA

Motivación para MDD de SMA (1/3)

- La mayoría de las propuestas de ISOA hacen énfasis en el modelado
 - MDD trata sobre modelado
- Actualmente se está estudiando en la comunidad de ISOA la integración de métodos y notaciones
 - MDD, y más concretamente MDA, establece un marco de transformaciones entre modelos
- MDD, y especialmente MDA, aborda los cambios en la tecnología
 - ISOA también

Parece razonable considerar MDD/MDA en ISOA

MDD: Desarrollo Dirigido por Modelos MDA: Model Driven Architecture del OMG

ISOA: Ingeniería del Software Orientada a Agentes, en inglés, AOSE

Juan Pavón Mestras, UCM

INGENIAS

5

Motivación para MDD de SMA (2/3)

- INGENIAS
 - Especificación de metamodelos para SMA
 - Mecanismo para integrar resultados del área
 - Fundamento de las herramientas: INGENIAS Development Kit (IDK)

IDK proporciona la infraestructura necesaria para MDD

IDK: INGENIAS Development Kit SMA: Sistemas MultiAgente

Juan Pavón Mestras, UCM

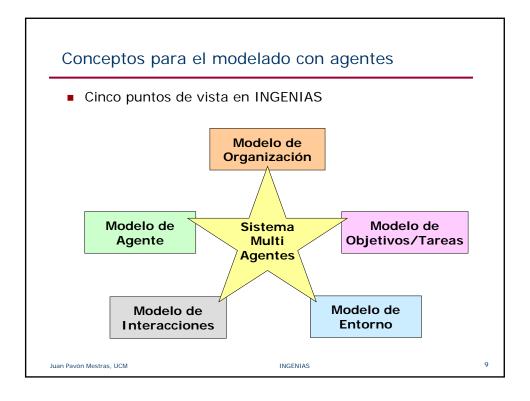
INGENIAS

Motivación para MDD de SMA (3/3)

- La experiencia en desarrollos de SMA muestra que
 - Es conveniente separar modelo de agentes de plataforma de implementación
 - Las plataformas de implementación son diversas
 - No siempre de agentes
 - El proceso de desarrollo requiere cambios en las herramientas que manipulan los modelos
 - · Los metamodelos evolucionan
 - Necesidad de incorporar nuevos conceptos
 - Durante el proceso se trata modelado de la aplicación y definición de transformaciones
 - También se va conociendo mejor la plataforma final
 - La reusabilidad es mayor si se aplica también a las actividades del proceso
 - Herramientas
 - Procesos

Juan Pavón Mestras, UCM

INGENIAS


7

Metamodelado de SMA

- La comunidad de ISOA es receptiva al metamodelado
 - Ejemplos: Ferber (1993) AOR, Odell (2004) AGR, AOSE2004, AgentLink3 (2005)
- Un buen metamodelo como base de un proceso de ingeniería requiere una validación mediante transferencia tecnológica en aplicaciones reales
 - Hay muy pocos metamodelos completos para SMA
 - INGENIAS, AML, PASSI, Tropos
 - Ejemplos de aplicación de metamodelos y MDD para SMA
 - En papel: Meta-DIMA, Malaca
 - En la práctica: INGENIAS
 - Method engineering (en desarrollo): FAME, PASSI

Juan Pavón Mestras, UCM

INGENIAS

Aspectos del SMA

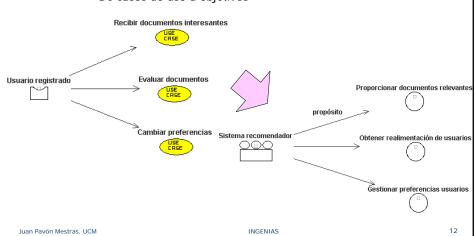
- Modelo de organización
 - Estructura del SMA, roles, grupos, relaciones de poder
 - Dinámica: workflows
- Modelo de agente
 - Los agentes realizan tareas o persiguen objetivos
 - Responsabilidades, control y estado mental del agente
- Modelo de objetivos y tareas
 - Identificación de objetivos generales y descomposición en objetivos más concretos que se pueden asignar a agentes
 - Similarmente con tareas
 - Objetivos: motivación ⇔ Tareas: actividad
- Modelo de interacción
 - Qué interacciones existen entre agentes/roles
- Modelo de entorno
 - Entidades y recursos con los que interactúa el SMA

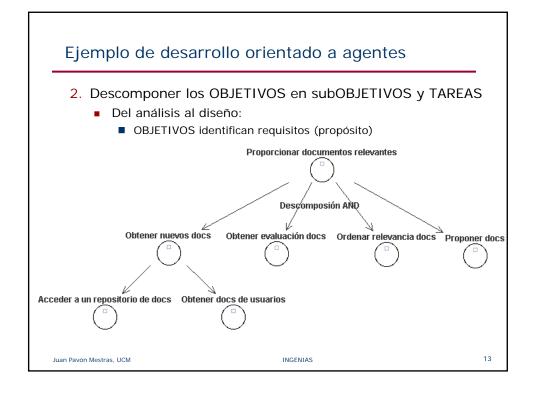
Juan Pavón Mestras, UCM

INGENIAS

Ejemplo de desarrollo orientado a agentes

- Diseño de un sistema de recomendación usando filtrado colaborativo
 - Los documentos llegan a una comunidad de usuarios
 - Serán evaluados según los gustos mayoritarios de la comunidad de usuarios de gustos similares

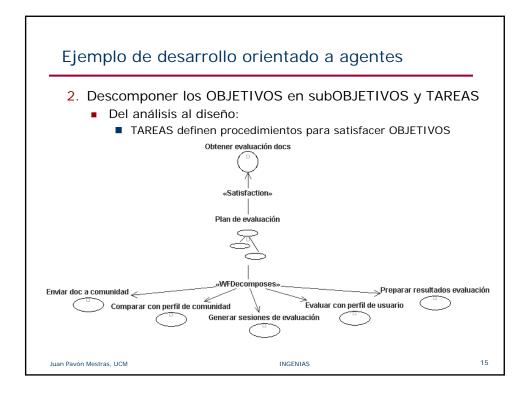

Juan Pavón Mestras, UCM

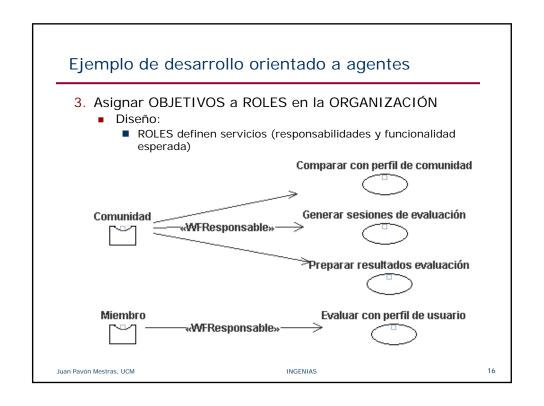

INGENIAS

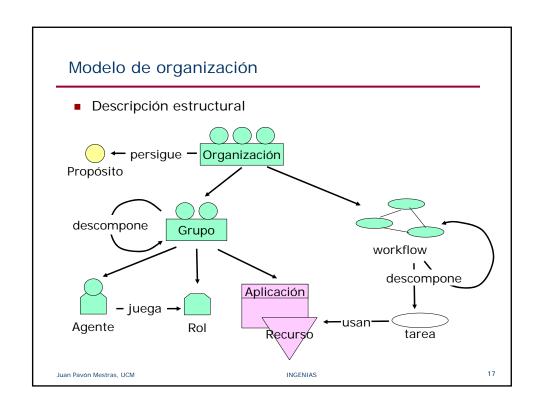
11

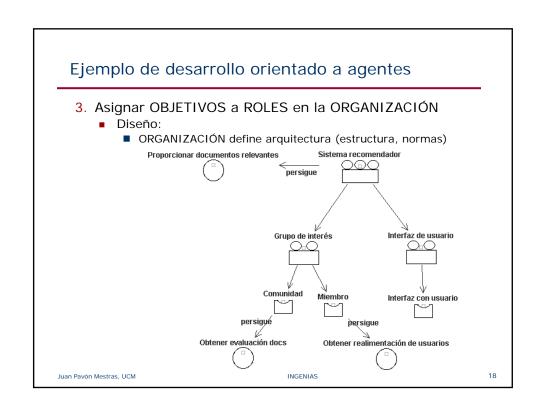
Ejemplo de desarrollo orientado a agentes

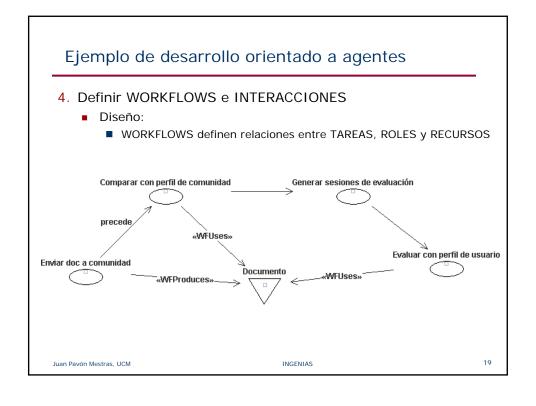
- 1. Identificar OBJETIVOS
 - Análisis: Qué tiene que hacer el sistema (<u>requisitos</u>)
 - De casos de uso a objetivos

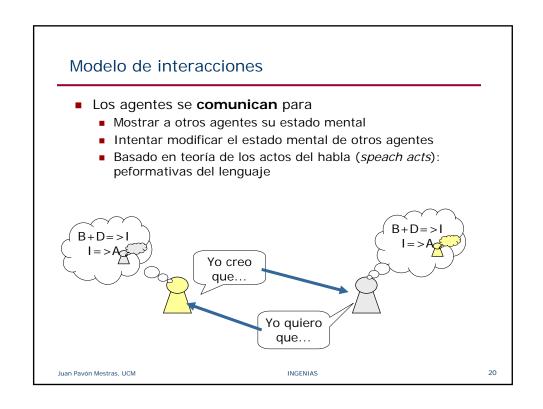



Modelo de objetivos y tareas


- Qué consecuencias tiene la ejecución de tareas y por qué se deberían ejecutar
 - Justifica la ejecución de tareas basándose en objetivos
 - Que a su vez se van modificando tras su ejecución
- Objetivo: Situación deseada
 - Conjunto de estados que el agente quiere lograr, mantener, o evitar
 - Una función de utilidad que maximizar
 - Responde a ¿por qué?
- Tarea: Transiciones de estado
 - Conduce a la consecución de objetivos
 - Responde a ¿cómo?



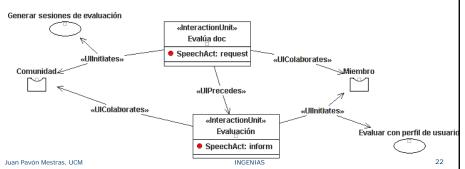

Juan Pavón Mestras, UCM INGENIAS



Definición de interacciones

- Qué actores participan en la interacción
 - Cada actor debe mostrar la razón por la que participa
 - Roles iniciador y colaboradores
- Definición de unidades de interacción
 - Mensajes, actos de habla
- Orden de las unidades de interacción
 - Protocolos: contract net, FIPA request, específicos.
 - Diagramas de protocolos AUML
- Acciones ejecutadas en la interacción
 - Criterios para decidir cuándo ejecutar una tarea
 - Consecuencias de la ejecución de una tarea
- Definición del contexto de la interacción
 - Objetivos que persigue la interacción
 - Estado mental de los participantes
- Modelo de control
 - Mecanismos de coordinación

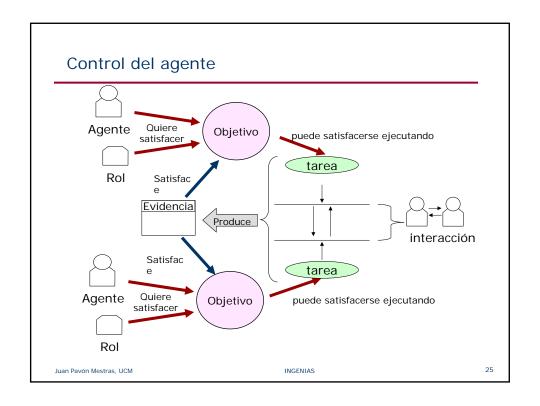
Juan Pavón Mestras, UCM


INGENIAS

21

4. Definir WORKFLOWS e INTERACCIONES

- Diseño:
 - INTERACCIONES definen cómo se comunican los ROLES



Ejemplo de desarrollo orientado a agentes 5. AGENTES desempeñan ROLES Diseño: AGENTES tienen capacidades para desempeñar ROLES ■ Cada AGENTE puede tener una estrategia diferente para satisfacer los objetivos del mismo ROLE Agente de Comunidad Comunidad «WFPlays» Miembro **Agente Personal** «WFPlays» «WFPlays» ≤Jnterfaz con usuario INGENIAS Juan Pavón Mestras, UCM

Ejemplo: diseño de los agentes

- Descripción de las capacidades de los agentes
 - Autonomía
 - El agente puede decidir por sí mismo qué agentes contactar para el proceso de compra de billete. Su propósito es asistir al usuario
 - Inteligencia
 - El agente decidirá, de acuerdo a ciertos parámetros (tiempo de respuesta, precio, calidad del cine, etc.) si le interesa o no aceptar un trato
 - Una manera de hacerlo es elaborando árboles de decisión y un algoritmo de inducción (como ID3) para determinar los criterios de selección de un buen cine
 - Además el agente podría ser capaz de aprender nuevas tareas
- En INGENIAS todo ello se hace gestionando y procesando un Estado Mental

uan Pavón Mestras, UCM INGENIAS 24

Ejemplo de desarrollo orientado a agentes

- 6. Generación de código
 - Simulación: validar el comportamiento del sistema multiagente
 - INGENIAS Agent Framework (IAF)
 - Realización e implantación de un sistema ejecutable
 - Módulos de generación de código del IDK
 - Generación de documentación
 - Módulo de generación de documentación HTML del IDK

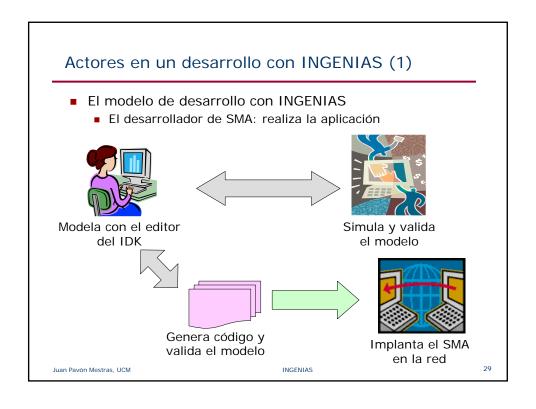
uan Pavón Mestras, UCM INGENIAS 2

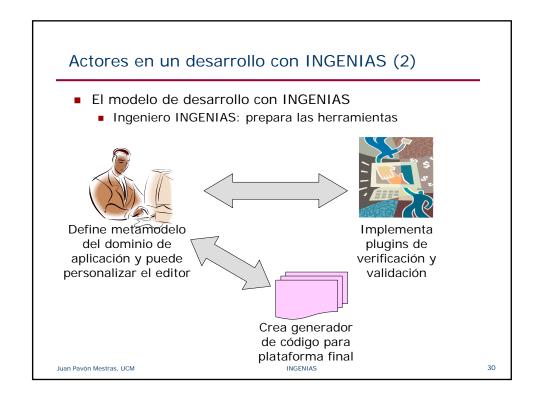
Proceso de desarrollo orientado a agentes

- Hay otras posibilidades
 - Centrarse y comenzar con los workflows
 - · Cuando la organización está orientada a procesos
 - Centrarse en la coordinación y las interacciones
 - · Cuando el problema es la definición de un algoritmo distribuido
 - · Sistemas cooperativos
 - Centrarse en el entorno
 - Sistemas empotrados
 - Robótica
 - Centrarse en los actores
 - · Simulación social

Juan Pavón Mestras, UCM

INGENIAS


27


Proceso de desarrollo con INGENIAS

- El uso del IDK determina un proceso de desarrollo característico, que es MDD, que complementa procesos software
 - Proceso centrado en el modelado
 - La implementación se deriva de los modelos mediante módulos del IDK para generación de código
 - Aparte del role del desarrollador clásico (usando CASE tools) hay que considerar el role del ingenierio de metamodelos
 - Puede extender el lenguaje de modelado y realizar nuevos módulos del IDK

Juan Pavón Mestras, UCM

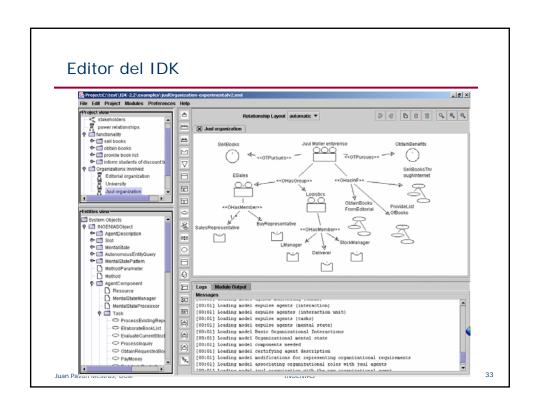
INGENIAS

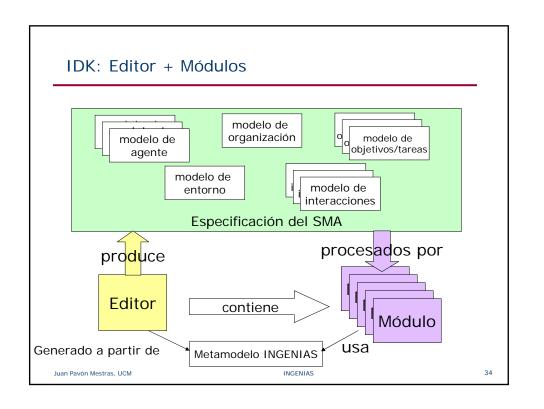
INGENIAS Development Kit (IDK)

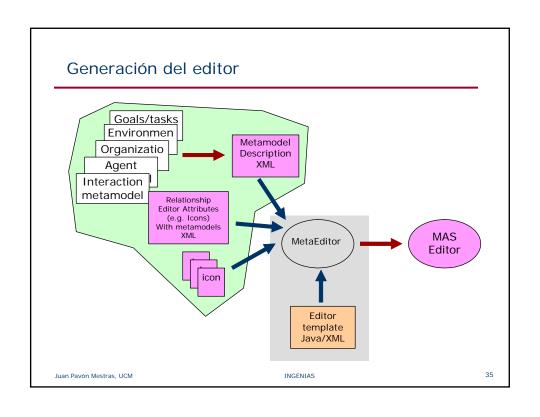
- Editor de modelos
 - Herramienta visual (notación INGENIAS)
 - Inicialmente basado en herramienta de meta-modelado (METAEDIT+)
 - · Actualmente 100% Java
 - Generación de modelos siguiendo los meta-modelos
 - Integración con agentes (en desarrollo)
- Módulos:
 - Para la generación de código
 - Plantillas configurables, marcadas con XML, para distintas plataformas de agentes
 - · Jade, Robocode, Servlets, Agentes grasia!
 - Para verificación y validación de especificaciones
 - Para generar documentación (HTML)
 - Armazón para desarrollar módulos personalizados

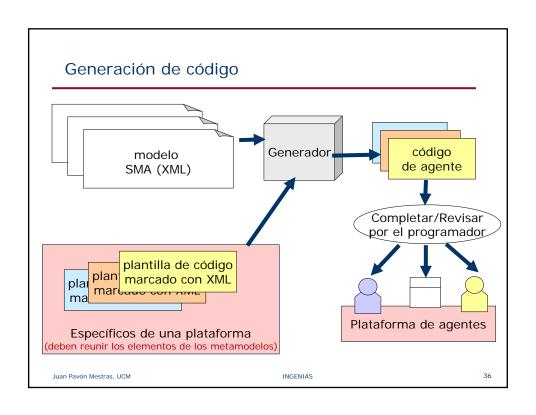
Juan Pavón Mestras, UCM

INGENIAS


31


Editor del IDK


- El editor del IDK permite
 - Crear y modificar modelos de SMA
 - Generar documentación (HTML)
 - Sacar snapshots de los diagramas para utilizarlos en otras aplicaciones
 - Procesar las especificaciones mientras se están generando con el editor o una vez grabadas en un fichero
 - Introducir explicaciones en lenguaje natural de los diferentes diagramas y de cada elemento en los diagramas, así como añadir etiquetas de texto
 - Invocar módulos de generación de código, validación y verificación de las especificaciones


Juan Pavón Mestras, UCM

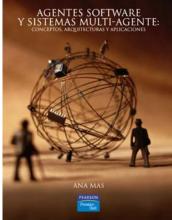
INGENIAS

Resumen

- INGENIAS proporciona
 - Una notación para modelar un SMA desde cinco puntos de vista:
 - Organización
 - Agente
 - Objetivos/Tareas
 - Interacciones
 - Entorno
 - Modelos de proceso de desarrollo dirigido por modelos
 - Herramientas de soporte: Ingenias Development Kit (IDK) http://ingenias.sourceforge.net
 - Generación de código sobre distintas plataformas
 - En el futuro tiene que evolucionar para:
 - Mejorar usabilidad y documentación
 - Facilitar trabajo en equipo (esto requiere, entre otras facilidades, control de versiones)
 - · Identificación de patrones de diseño orientado a agentes

Juan Pavón Mestras, UCM

INGENIAS


37

Bibliografía

 Ana Mas (2005). Agentes Software y Sistemas Multiagente. Conceptos, Arquitecturas y Aplicaciones. Pearson-Prentice Hall

INGENIAS

 Brian Henderson-Sellers y Paolo Giorgini, editores (2005). Agent-Oriented Methodologies. Idea Group Publishing

Agent-Oriented Methodologies

Juan Pavón Mestras, UCM