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Introduction

DCOPs by example: sleep/sense cycle problem

Distributed Constraint Optimization Problem (DCOP) helps modeling

cooperative multi-agent decision making.

S1
\) @ Distributed bounded resources

(sensors)

S3
S2 \) \) @ Discrete sets of possible actions
(ON/OFF)
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Introduction

DCOPs by example: sleep/sense cycle problem

Sensors may have their own preferences:

| have a cost of 5 to
turn on

I have a cost of 10 \ g1

to turn on V
W2 sl >

Sensors may report a cost for sampling (e.g. which may vary
depending on the remaining battery)

| have a cost of 2 to
turn on
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Introduction

DCOPs by example: sleep/sense cycle problem

Locality of interactions (physical neighborhood)

S1 and S2 receive a
utility of 10 if at least
one turns on

S1 and S3 receive a
utility of 10 if at least
one turns on

¥, s

There is a utility if a region is sampled by at least one sensor
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Introduction

DCOPs by example: sleep/sense cycle problem

(Distributed Collaborative systems) The goal is to distributedly find
the set of actions that maximize the global social reward
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Introduction

DCOPs by example: sleep/sense cycle problem

Sensors must solve the problem by exchanging messages with their
closer neighbours about their local information
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Introduction

How hard is to solve a DCOP?

DCOPs are in general NP-Hard problems. That means that with few
exceptions, namely:
Tree-like networks Binary submodular preferences

SO e o7

In general agents will need an exponential amount of communication
or computation to find the optimal set of actions for the whole network.
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Planning: Scheduling elective surgery

[Khanna et al., 2009 ]
Case of study: Princess Alexandra Hospital (Australia)

@ Multiple departments, 21 operating theaters divided into slots of
3.5 hours each

@ Each department books patients in consultation with the surgical
team in a common system.

@ Once a week the managers of the different departments meet
and review bookings (conflicts worked out by negotiation)

@ Further changes being often required (unexpected emergencies,
variation in patients’ health state, staff availability)
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Planning: Scheduling elective surgery

[Khanna et al., 2009 ]
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The electricity grid today

Powaer Stalion

@ The current hierarchical,
N - centrally-constrolled grid is
e obsolete.

—
Distribution

Subsetion @ Problems on scalability,
uTion efficiency and integration of
green energies

@ Most of the decisions about
the operation of a power
system are made in a
centralized fashion

“» g

@ RESIDENTIAL CONSUMER
www.oncor.com/images/content/pathwaytopower.gif
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Scheduling
Applications Smart grid

SMART GRID

A vision for the future — a network Can shut off in respanse to = Demand management
of integrated microgrids that can frequency fluctuations. P Use can be shifted to off-
monitor and heal itself 3 peak times to save money,

Solar panels

Disturbance
in the grid

-

Detect fluctuations and
disturbances, and can signal
far areas to be isolated,

Energy from small generators
and solar panels can reduce, Industrial
overall demand on the grid < plant

http://www.nature.com/news/2008/080730/images/454570a-6. jpg
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Vision for smart grid 2030

@ Centralized control is replaced with decentralized control:
o efficiency and scalability
e complex control mechanisms needed
@ Introduction of intelligence at all levels, especially at lower levels,
to provide timely and accurate control responses.
@ The use of intelligent agents:

o allow to respond to problems faster than a human operator.
o distributedly adapt to events and environments, and act
competitively or cooperatively for the good of the entire

system.
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DCOPs for smart grid: Configuration of power networks

[Petcu & Faltings, 2008]

(b) Optimal Configuration

(a) Simple network, with 3 power
sources, 14 buses and 11 sinks.

How sinks configure the network by enabling transmission lines such
that is (a) cycle-free and (b) the amount of power lost is minimized.
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@ Traffic light synchronization
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Traffic light synchronization

Early traffic lights Future traffic light generation

THERE'S A WAI
HEN ALL
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Traffic light synchronization

[R. Junges and A. L. C. Bazzan, 2010]

@ Distributedly coordinate traffic lights so that vehicles can traverse
an arterial in one traffic direction, keeping a specific speed
without stopping (green waves)

@ Each traffic light agent coordinates with its neighbours to select
its best signal plan considering:

e The current traffic light situation: The amount of traffic at
intersection j that is coming from direction /

e The sychronitzation and the coping with the volume of vehicles
with their neighbours
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Maxims for researchers

First takes all credit, second gets nothing
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Maxims for researchers

Either you are the first or you are the best in the crowd
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The moral

Identify open problems, preferably with few
contributions
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The most wanted list in distributed optimization

@ Trade-off solution quality/cost
@ Dynamic environments
@ Scalability
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e Open problems
@ Trade-off solution quality/cost
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Trade-off solution quality/cost

Bounded racionality: search for the best solution given the bounded
resources (time, computation, communication).
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Optimality: the idealistic (but usually impractical) term

Researchers proposed optimal algorithms to solve DCOPs trying to
minimize the communication and computation needed by agents:

DPOP [A. Petcu & B. Faltings, 2005]  Adopt [Modi et al., 2005]
OptAPO [R. Mailler & V. Lesser, 2004] Action-GDL [M. Vinyals et al., 2010]

However . ..

@ All of them have an exponential cost (either in size/number of
messages or computation)

@ Very often in real problems the price of optimality is simply
unafforable
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Incomplete algorithms: low-cost at no guarantees

Researchers also proposed low-cost incomplete algorithms:

DSA [Yokoo & Hirayama, 1996] DBA [Fitzpatrick & Meeterns, 2003]

@ Can return a solution at anytime
@ Small amount of communication/computation per agent

@ Usually good solutions in average

But not guarantee ...
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DSA: Distributed Stochastic Algorithm

Algorithm 2 Sketch of DSA  executed by an agent.

Randomly choose a value
while (no termination condition 1s met) do
if (a new value 1s assigned) then
send the new value to neighbors
end if
collect neighbors™ values, if any; compute the best possible
conflict reduction A
if (A = 0) or (A = () but there is a conflict) then
change to a value giving /A with probability p
end if
end while
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What we understand for guarantees?

. Bounds the maximum error of the solution with respect to the optimal

Our solution is at least
80% optimal

(o ol
= S
. o
2/ st \53\,)’¢
Quality guarantees:

@ Online guarantees

@ Offline guarantees
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Online guarantees

Different
Cost

Qualit . .
Boundi @ Per-instance specific bounds

@ Are known on runtime
@ Vary along the execution of the
algorithm

ADOPT [Modi et al., 2005],

Bounded Max-Sum [A. Farinelli et al., 2009],
DaC algorithms [M. Vinyals et al., 2010]

Running time

Allow agents to be aware of the goodness of their decisions, it is a
criteria to trade-off quality vs cost.
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Offline guarantees

Allow to assess the bound for the solution on convergence considering
problem properties before running the algorithm

@ Characterize problems that
are more favorable for the
algorithm

Problem characteristics

Quality
Bounds @ If the convergence is

guaranteed in a number of
steps => it quantifies the
cost of obtaining
B-solutions

K-size optimal algorithms, [J.P. Pearce

& M. Tambe, 2007]

Cost T-size optimal algorithms, [C.
Kiekintveld et al, 2010]
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e Open problems

@ Dynamic environments
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Dynamic environments

Agents’ decision variables and their dependencies change/are
added/are deleleted over time

1 0 3 1 (2) 3
6 &) 4
G1
1 @ 3
6 &) 4
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Solution:
Self-stabilization [Z. Collin et al., 1999]: is the ability of a system
responding to transient failures, eventually reaching a legal state and

maintaining it afterwards.

A self-stabilizing algorithm is able to cope with dynamic
environments.
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Beyond self-stabilization: optimize the cost of reconfiguration

Small changes require small efforts to adapt.

@ Optimize the amount of communication and computation to
recover from a change in the environment

@ Not start from scratch (to be completely re-run after every change
in the environment), take advantatge of the work done.

S-DPOP [A.Petcu & B.Faltings, 2005],
Bounded Fast Max Sum [K Macarthur et al, 2010], ...
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Beyond self-stabilization: super-stabilization

@ In super-stabilizing systems there are some conditions that are
always satisfied even during the reconfiguration:

e The previous assignment of variables is maintained until a new
solution has been computed

S-DPOP [A.Petcu & B.Faltings, 2005],
Bounded Fast Max Sum [K Macarthur et al, 2010], . ..
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Scalability

@ Many real-world domains require multi-agent systems to operate
on large systems (with a large number of agents)

@ Although low-cost algorithms scale to large systems in terms
of cost, often they do not scale in terms of solution quality
(even in near-decomposable systems)

One promising solution: Organizations
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What do organitzations offer?

Flexibility and adaptability of control at all levels Multiple levels of
reasoning among decisions of multiple agents:

@ Lower levels: more detailed information of the problem (local
view)
@ Higher levels: broader view but coarser (abstract view)

Agents in coarser levels take into account global dependencies that
are not considered by agents at lower levels => scalability
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Achieving scalability: organizations

3. Create and exchange 4. Make decisions and create
cluster abstracted state supervisory information

(4} O) 8

£

_ ~ Supervisors
y &
o — @ g
2. Report abstracted 5. Pass down supervisory
states and rewards information

1. Generate abstracted
states and rewar

6. Integrate supervisory
information

Learning
Agent
Network

Meritxell Vinyals Multi-Agents systems for Distributed Optimization



Trade-off solution quality/cost
Dynamic environments
Open problems Scalability

More about MAS?

@ A concise introduction to multiagent systems and
distributed artificial intelligence. N. Vlassis.
@ Multiagent Systems Algorithmic, Game-Theoretic, and

Logical Foundations. Yoav Shoham and Kevin Leyton-Brown.
Available at

http://www.masfoundations.org/download.html

@ Fundamentals of Multiagent Systems with NetLogo Examples.
Jos Maria Vidal. http://multiagent.com/

Meritxell Vinyals Multi-Agents systems for Distributed Optimization


http://www.masfoundations.org/download.html
http://multiagent.com/

Trade-off solution quality/cost
Dynamic environments
Open problems Scalability

More about a PhD life?

@ How to do Research At the MIT Al Lab. By a whole bunch of
current, former, and honorary MIT Al Lab graduate students.
http://ee.tongji.edu.cn/pages/forum/root/knowledgebase/

howtodoresearch/mit.research.how.to.html

@ How to Be a Good Graduate Student. Marie des Jardins.
http://www.cs.indiana.edu/how.2b/how.2b.html

@ http://www.phdcomics.com/

@ To know the road ahead, ask those coming back. Chinese
proverb
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Muchas gracias por vuestra atencion
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